EconPapers    
Economics at your fingertips  
 

An Improved Arabic Handwritten Recognition System using Deep Support Vector Machines

Mohamed Elleuch and Monji Kherallah
Additional contact information
Mohamed Elleuch: National School of Computer Science (ENSI), University of Manouba, Manouba, Tunisia
Monji Kherallah: Faculty of Sciences, University of Sfax, Sfax, Tunisia

International Journal of Multimedia Data Engineering and Management (IJMDEM), 2016, vol. 7, issue 2, 1-20

Abstract: Deep learning algorithms, as a machine learning algorithms developed in recent years, have been successfully applied in various domains of computer vision, such as face recognition, object detection and image classification. These Deep algorithms aim at extracting a high representation of the data via multi-layers in a deep hierarchical structure. However, to the authors' knowledge, these deep learning approaches have not been extensively studied to recognize Arabic Handwritten Script (AHS). In this paper, they present a deep learning model based on Support Vector Machine (SVM) named Deep SVM. This model has an inherent ability to select data points crucial to classify good generalization capabilities. The deep SVM is constructed by a stack of SVMs allowing to extracting/learning automatically features from the raw images and to perform classification as well. The Multi-class SVM with an RBF kernel, as non-linear discriminative features for classification, was chosen and tested on Handwritten Arabic Characters Database (HACDB). Simulation results show the effectiveness of the proposed model.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJMDEM.2016040101 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jmdem0:v:7:y:2016:i:2:p:1-20

Access Statistics for this article

International Journal of Multimedia Data Engineering and Management (IJMDEM) is currently edited by Chengcui Zhang

More articles in International Journal of Multimedia Data Engineering and Management (IJMDEM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jmdem0:v:7:y:2016:i:2:p:1-20