Modelling Uptake Sensitivities of Connected and Automated Vehicle Technologies
Gillian Harrison,
Simon P. Shepherd and
Haibo Chen
Additional contact information
Gillian Harrison: University of Leeds, UK
Simon P. Shepherd: University of Leeds, UK
Haibo Chen: University of Leeds, UK
International Journal of System Dynamics Applications (IJSDA), 2021, vol. 10, issue 2, 88-106
Abstract:
Connected and automated vehicle (CAV) technologies and services are rapidly developing and have the potential to revolutionise the transport systems. However, like many innovations, the uptake pathways are uncertain. The focus of this article is on improving understanding of factors that may affect the uptake of highly and fully automated vehicles, with a particular interest in the role of the internet of things (IoT). Using system dynamic modelling, sensitivity testing towards vehicle attributes (e.g., comfort, safety, familiarity) is carried out and scenarios were developed to explore how CAV uptake can vary under different conditions based around the quality of IoT provision. Utility and poor IoT are found to have the biggest influence. Attention is then given to CAV ‘services' that are characterized by the attributes explored earlier in the paper, and it is found that they could contribute to a 20% increase in market share.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJSDA.2021040106 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jsda00:v:10:y:2021:i:2:p:88-106
Access Statistics for this article
International Journal of System Dynamics Applications (IJSDA) is currently edited by Ahmad Taher Azar
More articles in International Journal of System Dynamics Applications (IJSDA) from IGI Global
Bibliographic data for series maintained by Journal Editor ().