Dead Sea Water Levels Analysis Using Artificial Neural Networks and Firefly Algorithm
Nawaf N. Hamadneh
Additional contact information
Nawaf N. Hamadneh: Saudi Electronic University, Saudi Arabia
International Journal of Swarm Intelligence Research (IJSIR), 2020, vol. 11, issue 3, 19-29
Abstract:
In this study, the performance of adaptive multilayer perceptron neural network (MLPNN) for predicting the Dead Sea water level is discussed. Firefly Algorithm (FFA), as an optimization algorithm is used for training the neural networks. To propose the MLPNN-FFA model, Dead Sea water levels over the period 1810–2005 are applied to train MLPNN. Statistical tests evaluate the accuracy of the hybrid MLPNN-FFA model. The predicted values of the proposed model were compared with the results obtained by another method. The results reveal that the artificial neural network (ANN) models exhibit high accuracy and reliability for the prediction of the Dead Sea water levels. The results also reveal that the Dead Sea water level would be around -450 until 2050.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJSIR.2020070102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jsir00:v:11:y:2020:i:3:p:19-29
Access Statistics for this article
International Journal of Swarm Intelligence Research (IJSIR) is currently edited by Yuhui Shi
More articles in International Journal of Swarm Intelligence Research (IJSIR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().