EconPapers    
Economics at your fingertips  
 

Study of Swarm Intelligence Algorithms for Optimizing Deep Neural Network for Bitcoin Prediction

S. Aarif Ahamed and Chandrasekar Ravi
Additional contact information
S. Aarif Ahamed: National Institute of Technology Puducherry, India
Chandrasekar Ravi: National Institute of Technology Puducherry, India

International Journal of Swarm Intelligence Research (IJSIR), 2021, vol. 12, issue 2, 22-38

Abstract: Blockchain, a shared digital ledger, operates on a peer-to-peer network which is used for storing the transactions. Cryptocurrencies are used for transactions in blockchain. The most popular breed among cryptocurrency was bitcoin. Predicting the day-to-day value of bitcoin is a challenging task due to nonlinear and market volatility. There are many statistical methods and machine learning algorithms proposed to forecast the cost of bitcoin, but they were lacking to predict the correct result when the input data set is larger and has more noise. To handle large data set, a deep learning technique has been used. The deep learning algorithms, especially LSTM network, also have some drawbacks such as high computational time, inability to generate higher quality prediction result. To avoid these shortcomings and make LSTM a better model for bitcoin prediction, it is necessary to optimize LSTM network. This paper presents a comparative study of numerous optimized deep learning techniques to forecast the price of bitcoin.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJSIR.2021040102 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jsir00:v:12:y:2021:i:2:p:22-38

Access Statistics for this article

International Journal of Swarm Intelligence Research (IJSIR) is currently edited by Yuhui Shi

More articles in International Journal of Swarm Intelligence Research (IJSIR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jsir00:v:12:y:2021:i:2:p:22-38