EconPapers    
Economics at your fingertips  
 

Novel Hybrid Genetic Arithmetic Optimization for Feature Selection and Classification of Pulmonary Disease Images

S. Nivetha and H. Hannah Inbarani
Additional contact information
S. Nivetha: Department of Computer Science, Periyar University, Salem, India
H. Hannah Inbarani: Department of Computer Science, Periyar University, Salem, India

International Journal of Sociotechnology and Knowledge Development (IJSKD), 2023, vol. 15, issue 1, 1-58

Abstract: The difficulty in predicting early cancer is due to the lack of early illness indicators. Metaheuristic approaches are a family of algorithms that seek to find the optimal values for uncertain problems with several implications in optimization and classification problems. An automated system for recognizing illnesses can respond with accuracy, efficiency, and speed, helping medical professionals spot abnormalities and lowering death rates. This study proposes the Novel Hybrid GAO (Genetic Arithmetic Optimization algorithm based Feature Selection) (Genetic Arithmetic Optimization Algorithm-based feature selection) method as a way to choose the features for several machine learning algorithms to classify readily available data on COVID-19 and lung cancer. By choosing just important features, feature selection approaches might improve performance. The proposed approach employs a Genetic and Arithmetic Optimization to enhance the outcomes in an optimization approach.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSKD.330150 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jskd00:v:15:y:2023:i:1:p:1-58

Access Statistics for this article

International Journal of Sociotechnology and Knowledge Development (IJSKD) is currently edited by Lincoln Christopher Wood

More articles in International Journal of Sociotechnology and Knowledge Development (IJSKD) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jskd00:v:15:y:2023:i:1:p:1-58