Real Time Location Prediction with Taxi-GPS Data Streams
A. K. Laha and
Sayan Putatunda
IIMA Working Papers from Indian Institute of Management Ahmedabad, Research and Publication Department
Abstract:
The prediction of the destination location at the time of pickup is an important problem with potential for substantial impact on the efficiency of a GPS enabled taxi service. While this problem has been explored earlier in the batch data set-up, we propose in this paper new solutions in the streaming data set-up. We examine four incremental learning methods using a Damped window model namely, Multivariate multiple regression, spherical-spherical regression, Randomized spherical K-NN regression and an Ensemble of these methods for their effectiveness in solving the destination prediction problem. The performance of these methods on several large datasets are evaluated using suitably chosen metrics and they were also compared with some other existing methods. The Multivariate multiple regression method and the Ensemble of the three methods are found to be the two best performers. The next pickup location problem is also considered and the aforementioned methods are examined for their suitability using real world datasets. As in the case of destination prediction problem, here also we find that the Multivariate multiple regression method and the Ensemble of the three methods gives better performance than the rest.
Date: 2017-03-31
New Economics Papers: this item is included in nep-ecm, nep-tre and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.iima.ac.in/sites/default/files/rnpfiles/2461814632017-03-02.pdf English Version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:iim:iimawp:14563
Access Statistics for this paper
More papers in IIMA Working Papers from Indian Institute of Management Ahmedabad, Research and Publication Department Contact information at EDIRC.
Bibliographic data for series maintained by ().