Learning About Inflation Measures for Interest Rate Rules
Luis-Felipe Zanna and
Marco Airaudo
No 2010/296, IMF Working Papers from International Monetary Fund
Abstract:
Empirical evidence suggests that goods are highly heterogeneous with respect to the degree of price rigidity. We develop a DSGE model featuring heterogeneous nominal rigidities across two sectors to study the equilibrium determinacy and stability under adaptive learning for interest rate rules that respond to inflation measures differing in their degree of price stickiness. We find that rules responding to headline inflation measures that assign a positive weight to the inflation of the sector with low price stickiness are more prone to generate macroeconomic instability than rules that respond exclusively to the inflation of the sector with high price stickiness. By this we mean that they are more prone to induce non-learnable fundamental-driven equilibria, learnable self-fulfilling expectations equilibria, and equilibria where fluctuations are unbounded. We discuss how our results depend on the elasticity of substitution across goods, the degree of heterogeneity in price rigidity, as well as on the timing of the rule.
Keywords: WP; least squares (search for similar items in EconPapers)
Pages: 45
Date: 2010-12-01
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.imf.org/external/pubs/cat/longres.aspx?sk=24531 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:imf:imfwpa:2010/296
Ordering information: This working paper can be ordered from
http://www.imf.org/external/pubs/pubs/ord_info.htm
Access Statistics for this paper
More papers in IMF Working Papers from International Monetary Fund International Monetary Fund, Washington, DC USA. Contact information at EDIRC.
Bibliographic data for series maintained by Akshay Modi ().