TGVx: Dynamic Personalized POI Deep Recommendation Model
Xiao-Jun Wang (),
Tao Liu () and
Weiguo Fan ()
Additional contact information
Xiao-Jun Wang: School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025, China
Tao Liu: School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China
Weiguo Fan: Department of Business Analytics, Tippie College of Business, University of Iowa, Iowa City, Iowa 52242
INFORMS Journal on Computing, 2023, vol. 35, issue 4, 786-796
Abstract:
Personalized points-of-interest (POI) recommendation is very important for improving the service quality of location-based social network applications. It has become one of the most popular research directions in the industry and academia. However, the realization of high-quality personalized POI recommendation faces three major challenges: (i) the interest drift issue caused by the spatiotemporal dynamics of user check-in behavior, (ii) how to integrate as much heterogeneous information as possible to alleviate data sparseness and cold start issues, and (iii) how to use implicit feedback to model complex high-order nonlinear user-POI interactions. To jointly address all these challenges, we propose the TGVx recommendation framework and establish a dynamic personalized POI deep recommendation model, where T and G respectively represent time and geographic factors, V represents out-of-town visitors, and x represents time slot number. TGVx is composed of x parallel TGV models where the TG module mines high-order nonlinear user-POI interaction relationships and integrates multisource heterogeneous information, and the V module transfers the check-in records of out-of-town visitors in hometowns and generates pseudo check-in records in the target city. Technically, we design a new unsupervised deep learning network T-SemiDAE for the TG module. We built a POI-word heterogeneous network for the V module and used graph embedding technology to match the most similar POIs across cities and transfer check-in records. The experimental results on the actual datasets show that the TGVx model is always better than other advanced models in terms of accuracy and diversity for local and out-of-town recommendation scenarios. Compared with the best baseline model semi-deep auto-encoder with a conditional layer the average improvement rates of accuracy and diversity of TGVx are 17.1% to 58.6% and 2.25% to 28.86%, respectively. In theory, our research effectively uses data science and analysis methods to design a recommender system. In practice, our research is motivated by practical problems, and the research results have high practical promotion value.
Keywords: location-based social network; personalized point-of-interest recommendation; deep learning; graph embedding representation; out-of-town recommendation; spatio-temporal dynamics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2023.1286 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:35:y:2023:i:4:p:786-796
Access Statistics for this article
More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().