EconPapers    
Economics at your fingertips  
 

TGVx: Dynamic Personalized POI Deep Recommendation Model

Xiao-Jun Wang (), Tao Liu () and Weiguo Fan ()
Additional contact information
Xiao-Jun Wang: School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025, China
Tao Liu: School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China
Weiguo Fan: Department of Business Analytics, Tippie College of Business, University of Iowa, Iowa City, Iowa 52242

INFORMS Journal on Computing, 2023, vol. 35, issue 4, 786-796

Abstract: Personalized points-of-interest (POI) recommendation is very important for improving the service quality of location-based social network applications. It has become one of the most popular research directions in the industry and academia. However, the realization of high-quality personalized POI recommendation faces three major challenges: (i) the interest drift issue caused by the spatiotemporal dynamics of user check-in behavior, (ii) how to integrate as much heterogeneous information as possible to alleviate data sparseness and cold start issues, and (iii) how to use implicit feedback to model complex high-order nonlinear user-POI interactions. To jointly address all these challenges, we propose the TGVx recommendation framework and establish a dynamic personalized POI deep recommendation model, where T and G respectively represent time and geographic factors, V represents out-of-town visitors, and x represents time slot number. TGVx is composed of x parallel TGV models where the TG module mines high-order nonlinear user-POI interaction relationships and integrates multisource heterogeneous information, and the V module transfers the check-in records of out-of-town visitors in hometowns and generates pseudo check-in records in the target city. Technically, we design a new unsupervised deep learning network T-SemiDAE for the TG module. We built a POI-word heterogeneous network for the V module and used graph embedding technology to match the most similar POIs across cities and transfer check-in records. The experimental results on the actual datasets show that the TGVx model is always better than other advanced models in terms of accuracy and diversity for local and out-of-town recommendation scenarios. Compared with the best baseline model semi-deep auto-encoder with a conditional layer the average improvement rates of accuracy and diversity of TGVx are 17.1% to 58.6% and 2.25% to 28.86%, respectively. In theory, our research effectively uses data science and analysis methods to design a recommender system. In practice, our research is motivated by practical problems, and the research results have high practical promotion value.

Keywords: location-based social network; personalized point-of-interest recommendation; deep learning; graph embedding representation; out-of-town recommendation; spatio-temporal dynamics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2023.1286 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:35:y:2023:i:4:p:786-796

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:35:y:2023:i:4:p:786-796