EconPapers    
Economics at your fingertips  
 

A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems

Shanshan Wang () and Erick Delage ()
Additional contact information
Shanshan Wang: GERAD and Department of Decision Sciences, HEC Montréal, Montreal, Quebec H3T 2A7, Canada
Erick Delage: GERAD and Department of Decision Sciences, HEC Montréal, Montreal, Quebec H3T 2A7, Canada

INFORMS Journal on Computing, 2024, vol. 36, issue 3, 849-867

Abstract: This paper studies a distributionally robust multi-item newsvendor problem, where the demand distribution is unknown but specified with a general event-wise ambiguity set. Using the event-wise affine decision rules, we can obtain a conservative approximation formulation of the problem, which can typically be further reformulated as a linear program. In order to efficiently solve the resulting large-scale linear program, we develop a column generation-based decomposition scheme and speed up the computational efficiency by exploiting a special column selection strategy and stopping early based on a Karush-Kuhn-Tucker condition test. Focusing on the Wasserstein ambiguity set and the event-wise mean absolute deviation set, a computational study demonstrates both the computational efficiency of the proposed algorithm, which significantly outperforms a commercial solver and a Benders decomposition method, and the out-of-sample superiority of distributionally robust solutions relative to their sample average approximation counterparts.

Keywords: distributionally robust optimization; column generation; multi-item newsvendor problem; event-wise ambiguity set (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2022.0010 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:36:y:2024:i:3:p:849-867

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:36:y:2024:i:3:p:849-867