EconPapers    
Economics at your fingertips  
 

A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows

Éric Taillard, Philippe Badeau, Michel Gendreau, François Guertin and Jean-Yves Potvin
Additional contact information
Éric Taillard: Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Corso Elvezia 36, CH-6900 Lugano, Switzerland
Philippe Badeau: Centre Universitaire des Sciences et Techniques, Université Blaise Pascal, Clermont Ferrand II, Campus Universitaire des Cézeaux, 63174 Aubière Cedex, France
Michel Gendreau: Centre de recherche sur les transports, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada and Département d'informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
François Guertin: Centre de recherche sur les transports, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada and Département d'informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
Jean-Yves Potvin: Centre de recherche sur les transports, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada and Département d'informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada

Transportation Science, 1997, vol. 31, issue 2, 170-186

Abstract: This paper describes a tabu search heuristic for the vehicle routing problem with soft time windows. In this problem, lateness at customer locations is allowed although a penalty is incurred and added to the objective value. By adding large penalty values, the vehicle routing problem with hard time windows can be addressed as well. In the tabu search, a neighborhood of the current solution is created through an exchange procedure that swaps sequences of consecutive customers (or segments) between two routes. The tabu search also exploits an adaptive memory that contains the routes of the best previously visited solutions. New starting points for the tabu search are produced through a combination of routes taken from different solutions found in this memory. Many best-known solutions are reported on classical test problems.

Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (157)

Downloads: (external link)
http://dx.doi.org/10.1287/trsc.31.2.170 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:31:y:1997:i:2:p:170-186

Access Statistics for this article

More articles in Transportation Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-04-17
Handle: RePEc:inm:ortrsc:v:31:y:1997:i:2:p:170-186