Dynamic Pricing and Routing for Same-Day Delivery
Marlin W. Ulmer ()
Additional contact information
Marlin W. Ulmer: Technische Universität Braunschweig, 38106 Braunschweig, Germany
Transportation Science, 2020, vol. 54, issue 4, 1016-1033
Abstract:
An increasing number of e-commerce retailers offers same-day delivery. To deliver the ordered goods, providers dynamically dispatch a fleet of vehicles transporting the goods from the warehouse to the customers. In many cases, retailers offer different delivery deadline options, from four-hour delivery up to next-hour delivery. Due to the deadlines, vehicles often only deliver a few orders per trip. The overall number of served orders within the delivery horizon is small and the revenue low. As a result, many companies currently struggle to conduct same-day delivery cost-efficiently. In this paper, we show how dynamic pricing is able to substantially increase both revenue and the number of customers we are able to serve the same day. To this end, we present an anticipatory pricing and routing policy (APRP) method that incentivizes customers to select delivery deadline options efficiently for the fleet to fulfill. This maintains the fleet’s flexibility to serve more future orders. We model the respective pricing and routing problem as a Markov decision process (MDP). To apply APRP, the state-dependent opportunity costs per customer and option are required. To this end, we use a guided offline value function approximation (VFA) based on state space aggregation. The VFA approximates the opportunity cost for every state and delivery option with respect to the fleet’s flexibility. As an offline method, APRP is able to determine suitable prices instantly when a customer orders. In an extensive computational study, we compare APRP with a policy based on fixed prices and with conventional temporal and geographical pricing policies. APRP outperforms the benchmark policies significantly, leading to both a higher revenue and more customers served the same day.
Keywords: same-day delivery; dynamic vehicle routing; dynamic pricing; stochastic requests; opportunity cost; value function approximation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
https://doi.org/10.1287/trsc.2019.0958 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:54:y:2020:i:4:p:1016-1033
Access Statistics for this article
More articles in Transportation Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().