A Genetic Programming Approach for EUR/USD Exchange Rate Forecasting and Trading
Georgios Vasilakis (),
Konstantinos Theofilatos (),
Efstratios Georgopoulos (),
Andreas Karathanasopoulos () and
Spiros Likothanassis ()
Computational Economics, 2013, vol. 42, issue 4, 415-431
Abstract:
The purpose of this article is to present a novel genetic programming trading technique in the task of forecasting the next day returns when trading the EUR/USD exchange rate based on the exchange rates of historical data. Aiming at testing its effectiveness, we benchmark the forecasting performance of our genetic programming implementation with three traditional strategies (naive strategy, MACD, and a buy & hold strategy) plus a hybrid evolutionary artificial neural network approach. The proposed genetic programming technique was found to demonstrate the highest trading performance in terms of annualized return and information ratio when compared to all other strategies which have been used. When more elaborate trading techniques, such as leverage, were combined with the examined models, the genetic programming approach still presented the highest trading performance. To the best of our knowledge, this is the first time that genetic programming is applied in the problem of effectively modeling and trading with the EUR/USD exchange rate. Our application now offers practitioners with an effective and extremely promising set of results when forecasting in the foreign exchange market. The developed genetic programming environment is implemented using the C++ programming language and includes a variation of the genetic programming algorithm with tournament selection. Copyright Springer Science+Business Media New York 2013
Keywords: Genetic programming; Evolutionary algorithms; Tournament selection; Exchange forecasting; EUR/USD exchange rates; Financial trading strategies (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10614-012-9345-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:42:y:2013:i:4:p:415-431
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-012-9345-8
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().