Belief Aggregation with Automated Market Makers
Rajiv Sethi () and
Jennifer Wortman Vaughan ()
Additional contact information
Jennifer Wortman Vaughan: Microsoft Research
Computational Economics, 2016, vol. 48, issue 1, No 8, 155-178
Abstract:
Abstract We consider the properties of a cost function based automated market maker aggregating the beliefs of risk-averse traders with finite budgets. Individuals can interact with the market maker an arbitrary number of times before the state of the world is revealed. We show that the resulting sequence of prices is convergent under general conditions, and explore the properties of the limiting price and trader portfolios. The limiting price cannot be expressed as a function of trader beliefs, since it is sensitive to the market maker’s cost function as well as the order in which traders interact with the market. For a range of trader preferences, however, we show numerically that the limiting price provides a good approximation to a weighted average of beliefs, inclusive of the market designer’s prior belief as reflected in the initial contract price. This average is computed by weighting trader beliefs by their respective budgets, and weighting the initial contract price by the market maker’s worst-case loss, implicit in the cost function. Since cost function parameters are chosen by the market designer, this allows for an inference regarding the budget-weighted average of trader beliefs.
Keywords: Prediction markets; Automated market makers; Belief aggregation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-015-9514-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:48:y:2016:i:1:d:10.1007_s10614-015-9514-7
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-015-9514-7
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().