A New Appraisal Model of Second-Hand Housing Prices in China’s First-Tier Cities Based on Machine Learning Algorithms
Lulin Xu () and
Zhongwu Li ()
Additional contact information
Lulin Xu: China University of Geosciences (Wuhan)
Zhongwu Li: China University of Geosciences (Wuhan)
Computational Economics, 2021, vol. 57, issue 2, No 10, 617-637
Abstract:
Abstract The accurate appraisal of second-hand housing prices plays an important role in second-hand housing transactions, mortgages and risk assessment. Machine learning technology, gradually applied to finance and economics, can also be used to upgrade the traditional appraisal methods of second-hand housing. A large number of appraisal indicators and price data on second-hand housing in Beijing, Shanghai, Guangzhou and Shenzhen, four first-tier cities in China, can be obtained by using crawler technology. Then, the geographical location information of second-hand housing can be visualized by GIS technology, and the descriptive text of second-hand housing can be processed by natural language processing. Finally, combined with other numerical and classification indicators, the second-hand housing appraisal model based on a two-tier stacking framework is constructed by using random forest, adaptive boosting, gradient boosting decision tree, light gradient boosting machine and extreme gradient boosting as base models and back propagation neural network as the meta-model. The result of model training shows that the machine learning models improve the accuracy significantly compared to linear multiple regression and spatial econometric models, and the performance of the stacking model is better than that of standalone machine learning models.
Keywords: Second-hand housing appraisal model; Machine learning; Natural language processing; Stacking ensemble model; Data visualization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-020-09973-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:57:y:2021:i:2:d:10.1007_s10614-020-09973-5
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-020-09973-5
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().