EconPapers    
Economics at your fingertips  
 

Towards Crafting Optimal Functional Link Artificial Neural Networks with Rao Algorithms for Stock Closing Prices Prediction

Subhranginee Das (), Sarat Chandra Nayak () and Biswajit Sahoo ()
Additional contact information
Subhranginee Das: KIIT University
Sarat Chandra Nayak: CMR College of Engineering &Technology
Biswajit Sahoo: KIIT University

Computational Economics, 2022, vol. 60, issue 1, No 1, 23 pages

Abstract: Abstract Quite a good number of population-based meta-heuristics based on mimicking natural phenomena are observed in the literature in resolving varieties of complex optimization problems. They are widely used in search of the optimal model parameters of artificial neural networks (ANNs). However, efficiencies of these are mostly dependent on fine tuning algorithm-specific parameters. Rao algorithms are metaphor-less meta-heuristics which do not need any algorithm-specific parameters. Functional link artificial neural network (FLANN) is a flat network and possesses the ability of mapping input–output nonlinear relationships by using amplification in input vector dimension. This article attempts to observe the efficacy of Rao algorithms on searching the most favorable parameters of FLANN, thus forming hybrid models termed as Rao algorithm-based FLANNs (RAFLANNs). The models are evaluated on forecasting five stock markets such as NASDAQ, BSE, DJIA, HSI, and NIKKEI. The RAFLANNs performances are compared with that of variations of FLANN (i.e., FLANN based on gradient descent, multi-verse optimizer, monarch butterfly optimization and genetic algorithm) and conventional models (i.e., MLP, SVM and ARIMA). The proposed models are found better in terms of prediction accuracy, computation time and statistical significance test.

Keywords: Stock market forecasting; Rao algorithms; Functional link artificial neural network; Genetic algorithm; Monarch butterfly optimization; Financial time series forecasting (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10614-021-10130-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:60:y:2022:i:1:d:10.1007_s10614-021-10130-9

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-021-10130-9

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:60:y:2022:i:1:d:10.1007_s10614-021-10130-9