LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios
Andrés García-Medina () and
Ester Aguayo-Moreno ()
Additional contact information
Andrés García-Medina: Centro de Investigación en Matemáticas
Ester Aguayo-Moreno: Centro de Investigación en Matemáticas
Computational Economics, 2024, vol. 63, issue 4, No 9, 1542 pages
Abstract:
Abstract In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM–GARCH versions under the Diebold–Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market.
Keywords: Cryptocurrencies; GARCH–LSTM models; Volatility (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-023-10373-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:63:y:2024:i:4:d:10.1007_s10614-023-10373-8
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-023-10373-8
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().