Measuring efficiency of community health centers: a multi-model approach considering quality of care and heterogeneous operating environments
Ronald G. McGarvey (),
Andreas Thorsen,
Maggie L. Thorsen and
Rohith Madhi Reddy
Additional contact information
Ronald G. McGarvey: University of Missouri
Andreas Thorsen: Montana State University
Maggie L. Thorsen: Montana State University
Rohith Madhi Reddy: University of Missouri
Health Care Management Science, 2019, vol. 22, issue 3, No 10, 489-511
Abstract:
Abstract Over 1300 federally-qualified health centers (FQHCs) in the US provide care to vulnerable populations in different contexts, addressing diverse patient health and socioeconomic characteristics. In this study, we use data envelopment analysis (DEA) to measure FQHC performance, applying several techniques to account for both quality of outputs and heterogeneity among FQHC operating environments. To address quality, we examine two formulations, the Two-Model DEA approach of Shimshak and Lenard (denoted S/L), and a variant of the Quality-Adjusted DEA approach of Sherman and Zhou (denoted S/Z). To mitigate the aforementioned heterogeneities, a data science approach utilizing latent class analysis (LCA) is conducted on a set of metrics not included in the DEA, to identify latent typologies of FQHCs. Each DEA quality approach is applied in both an aggregated (including all FQHCs in a single DEA model) and a partitioned case (solving a DEA model for each latent class, such that an FQHC is compared only to its peer group). We find that the efficient frontier for the aggregated S/L approach disproportionately included smaller FQHCs, whereas the aggregated S/Z approach’s reference set included many larger FQHCs. The partitioned cases found that both the S/L and S/Z aggregated models disproportionately disfavored (different) members of certain classes with respect to efficiency scores. Based on these results, we provide general insights into the trade-offs of using these two models in conjunction with a clustering approach such as LCA.
Keywords: Data envelopment analysis; Data science; Latent class analysis; OR in health services; Public sector OR (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10729-018-9455-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:hcarem:v:22:y:2019:i:3:d:10.1007_s10729-018-9455-5
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10729
DOI: 10.1007/s10729-018-9455-5
Access Statistics for this article
Health Care Management Science is currently edited by Yasar Ozcan
More articles in Health Care Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().