Rank- and Sign-Dependent Linear Utility Models for Finite First-Order Gambles
R Duncan Luce and
Peter C Fishburn
Journal of Risk and Uncertainty, 1991, vol. 4, issue 1, 29-59
Abstract:
Finite first-order gambles are axiomatized. The representation combines features of prospect and rank-dependent theories. What is novel are distinctions between gains and losses and the inclusion of a binary operation of joint receipt. In addition to many of the usual structural and rationality axioms, joint receipt forms an ordered concatenation structure with special features for games and losses. Pfanzagl's (1959) consistency principle is assumed for gains and losses separately. The nonrational assumption is that a gamble of gains and losses is indifferent to the joint receipt of its gains pitted against the status quo and of its losses against the status quo. Copyright 1991 by Kluwer Academic Publishers
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (80)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:jrisku:v:4:y:1991:i:1:p:29-59
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/11166/PS2
Access Statistics for this article
Journal of Risk and Uncertainty is currently edited by W. Kip Viscusi
More articles in Journal of Risk and Uncertainty from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().