Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles
Xiang Zhang (),
David Rey,
S. Travis Waller and
Nathan Chen
Additional contact information
Xiang Zhang: University of New South Wales
David Rey: University of New South Wales
S. Travis Waller: University of New South Wales
Nathan Chen: University of New South Wales
Networks and Spatial Economics, 2019, vol. 19, issue 2, No 11, 633-668
Abstract:
Abstract Plug-in electric vehicles (PEVs) are sustainable alternatives to internal combustion engine vehicles thanks to the use of environmentally-friendly electric energy and the reduction of off-gas emissions. One of the major concerns associated with the adoption of PEVs is the distance limit, i.e. the fact that PEVs may not be able to complete trips without recharging. In this study, we propose to model the assignment of mixed-vehicular traffic of PEVs with two different charging capabilities accounting for PEV range constraints. We consider two recharge modes: charging stations with recharge time and modern charging lanes where PEVs are recharged automatically by traversing the lanes. The main objective of this study is to explore the influences of multi-modal recharge service provision on individual trips and network performance. First, a network transformation method is proposed to incorporate recharge decisions within the PEV route choice model. Second, we develop a novel convex programming formulation for mixed-vehicular traffic assignment accounting for en-route multi-modal recharge, derive mathematical properties and propose solution algorithms. In this rich traffic assignment framework, PEV route choice is represented as a resource-constrained shortest path subproblem with recharge time and we identify a suitable exact algorithm to solve this subproblem during the assignment process. Finally, computational experiments are conducted to demonstrate the performance of the proposed models and algorithms. The numerical results reveal that the incorporation of PEV multi-modal recharge has a significant impact on both route choice strategies and equilibrium flow patterns, wherein influencing factors include the distance limit, deployment of charging stations and charging lanes, and recharge time. In addition, we identify counter-intuitive configurations with regard to the way range constraints and recharge time reshape the equilibrium network flows.
Keywords: Mixed-vehicular traffic assignment; Network equilibrium; Plug-in electric vehicle; Multi-modal recharge (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11067-019-09454-9 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:netspa:v:19:y:2019:i:2:d:10.1007_s11067-019-09454-9
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11067/PS2
DOI: 10.1007/s11067-019-09454-9
Access Statistics for this article
Networks and Spatial Economics is currently edited by Terry L. Friesz
More articles in Networks and Spatial Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().