EconPapers    
Economics at your fingertips  
 

Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme

Ron Chan () and Simon Hubbert ()

Review of Derivatives Research, 2014, vol. 17, issue 2, 189 pages

Abstract: This paper will demonstrate how European and American option prices can be computed under the jump-diffusion model using the radial basis function (RBF) interpolation scheme. The RBF interpolation scheme is demonstrated by solving an option pricing formula, a one-dimensional partial integro-differential equation (PIDE). We select the cubic spline radial basis function and adopt a simple numerical algorithm (Briani et al. in Calcolo 44:33–57, 2007 ) to establish a finite computational range for the improper integral of the PIDE. This algorithm reduces the truncation error of approximating the improper integral. As a result, we are able to achieve a higher approximation accuracy of the integral with the application of any quadrature. Moreover, we a numerical technique termed cubic spline factorisation (Bos and Salkauskas in J Approx Theory 51:81–88, 1987 ) to solve the inversion of an ill-conditioned RBF interpolant, which is a well-known research problem in the RBF field. Finally, our numerical experiments show that in the European case, our RBF-interpolation solution is second-order accurate for spatial variables, while in the American case, it is second-order accurate for spatial variables and first-order accurate for time variables. Copyright Springer Science+Business Media New York 2014

Keywords: European options; American options; Jump-diffusion models; Radial basis functions; Cubic spline; C6; G12; G13 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11147-013-9095-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:revdev:v:17:y:2014:i:2:p:161-189

Ordering information: This journal article can be ordered from
http://www.springer. ... 29/journal/11147/PS2

DOI: 10.1007/s11147-013-9095-3

Access Statistics for this article

Review of Derivatives Research is currently edited by Gurdip Bakshi and Dilip Madan

More articles in Review of Derivatives Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:revdev:v:17:y:2014:i:2:p:161-189