A causal inference approach to measure the vulnerability of urban metro systems
Nan Zhang (),
Daniel J. Graham (),
Daniel Hörcher () and
Prateek Bansal ()
Additional contact information
Nan Zhang: Imperial College London
Daniel J. Graham: Imperial College London
Daniel Hörcher: Imperial College London
Prateek Bansal: Imperial College London
Transportation, 2021, vol. 48, issue 6, No 13, 3269-3300
Abstract:
Abstract Transit operators need vulnerability measures to understand the level of service degradation under disruptions. This paper contributes to the literature with a novel causal inference approach for estimating station-level vulnerability in metro systems. The empirical analysis is based on large-scale data on historical incidents and population-level passenger demand. This analysis thus obviates the need for assumptions made by previous studies on human behaviour and disruption scenarios. We develop four empirical vulnerability metrics based on the causal impact of disruptions on travel demand, average travel speed and passenger flow distribution. Specifically, the proposed metrics based on the irregularity in passenger flow distribution extends the scope of vulnerability measurement to the entire trip distribution, instead of just analysing the disruption impact on the entry or exit demand (that is, moments of the trip distribution). The unbiased estimates of disruption impact are obtained by adopting a propensity score matching method, which adjusts for the confounding biases caused by non-random occurrence of disruptions. An application of the proposed framework to the London Underground indicates that the vulnerability of a metro station depends on the location, topology, and other characteristics. We find that, in 2013, central London stations are more vulnerable in terms of travel demand loss. However, the loss of average travel speed and irregularity in relative passenger flows reveal that passengers from outer London stations suffer from longer individual delays due to lack of alternative routes.
Keywords: Vulnerability; Urban metro system; Causal inference; Propensity score matching (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11116-020-10152-6 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:48:y:2021:i:6:d:10.1007_s11116-020-10152-6
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-020-10152-6
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().