A Kernel Technique for Forecasting the Variance-Covariance Matrix
Ralf Becker,
Adam Clements and
Robert O'Neill
Centre for Growth and Business Cycle Research Discussion Paper Series from Economics, The University of Manchester
Abstract:
In this paper we propose a novel methodology for forecasting variance convariance matrices (VCM) using kernel estimates. While the popular Riskmetrics methodology can be seen as a special case of our methodology, the generalisation is significant as it allows the researcher to use a number of variables to determine the kernel weights of past VCM. The complexity of the methodology scales with the number of explanatory variables used and not with the size of the VCM. This, as well as the automatic positive definiteness of the VCM forecasts are major improvements on currently available forecasting methods. An empirical analysis establishes the usefulness of our proposed methodology.
Pages: 33 pages
Date: 2010
New Economics Papers: this item is included in nep-ecm and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://hummedia.manchester.ac.uk/schools/soss/cgb ... apers/dpcgbcr151.pdf (application/pdf)
Related works:
Working Paper: A Kernel Technique for Forecasting the Variance-Covariance Matrix (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:man:cgbcrp:151
Access Statistics for this paper
More papers in Centre for Growth and Business Cycle Research Discussion Paper Series from Economics, The University of Manchester Contact information at EDIRC.
Bibliographic data for series maintained by Patrick Macnamara ().