Probability density of the wavelet coefficients of a noisy chaos
Matthieu Garcin () and
Dominique Guegan ()
Additional contact information
Matthieu Garcin: Centre d'Economie de la Sorbonne et Natixis Asset Management, https://centredeconomiesorbonne.cnrs.fr
Dominique Guegan: Centre d'Economie de la Sorbonne, https://cv.archives-ouvertes.fr/dominique-guegan
Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne
Abstract:
We are interested in the random wavelet coefficients of a noisy signal when this signal is the unidimensional or multidimensional attractor of a chaos. More precisely we give an expression for the probability density of such coefficients. If the noise is a dynamic noise, then our expression is exact. If we face a measurement noise, then we propose two approximations using Taylor expansion or Edgeworth expansion. We give some illustrations of these theoretical results for the logistic map, the tent map and the Hénon map, perturbed by a Gaussian or a Cauchy noise
Keywords: Wavelets; dynamical systems; chaos; noise; alpha-stable (search for similar items in EconPapers)
Pages: 29 pages
Date: 2013-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
ftp://mse.univ-paris1.fr/pub/mse/CES2013/13015.pdf (application/pdf)
Related works:
Working Paper: Probability density of the wavelet coefficients of a noisy chaos (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:13015
Access Statistics for this paper
More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().