Structure and oddness theorems for pairwise stable networks
Philippe Bich () and
Julien Fixary ()
Additional contact information
Philippe Bich: Centre d'Economie de la Sorbonne, Paris School of Economics, https://bichgame.wordpress.com/
Julien Fixary: Centre d'Economie de la Sorbonne, Université Paris 1 Panthéon-Sorbonne, https://centredeconomiesorbonne.cnrs.fr
Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne
Abstract:
We determine the topological structure of the graph of pairwise stable weighted networks. As an application, we obtain that for large classes of polynomial payoff functions, there exists generically and odd number of pairwise stable networks. This improves the results in Bich and Morhaim ([5] or in Herings and Zhan ([14]), and can be applied to many existing models, as for example to the public good provision model of Bramoullé and Kranton ([8]), the information transmission model of Calvó-Armengol ([9]), the two-way flow model of Bala and Goyal ([2]), or Zenou-Ballester's key-player model ([3])
Keywords: Weighted Networks; Pairwise Stable Networks Correspondence; Generic Oddness (search for similar items in EconPapers)
JEL-codes: C72 D85 (search for similar items in EconPapers)
Pages: 31 pages
Date: 2021-06
New Economics Papers: this item is included in nep-gth and nep-isf
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://mse.univ-paris1.fr/pub/mse/CES2021/21016.pdf (application/pdf)
https://halshs.archives-ouvertes.fr/halshs-03287524
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:21016
Access Statistics for this paper
More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().