Time Series Forecasting: The Case for the Single Source of Error State Space
John Ord,
Ralph D Snyder (),
Anne B Koehler,
Rob Hyndman and
Mark Leeds
No 7/05, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics
Abstract:
The state space approach to modelling univariate time series is now widely used both in theory and in applications. However, the very richness of the framework means that quite different model formulations are possible, even when they purport to describe the same phenomena. In this paper, we examine the single source of error [SSOE] scheme, which has perfectly correlated error components. We then proceed to compare SSOE to the more common version of the state space models, for which all the error terms are independent; we refer to this as the multiple source of error [MSOE] scheme. As expected, there are many similarities between the MSOE and SSOE schemes, but also some important differences. Both have ARIMA models as their reduced forms, although the mapping is more transparent for SSOE. Further, SSOE does not require a canonical form to complete its specification. An appealing feature of SSOE is that the estimates of the state variables converge in probability to their true values, thereby leading to a formal inferential structure for the ad-hoc exponential smoothing methods for forecasting. The parameter space for SSOE models may be specified to match that of the corresponding ARIMA scheme, or it may be restricted to meaningful sub-spaces, as for MSOE but with somewhat different outcomes. The SSOE formulation enables straightforward extensions to certain classes of non-linear models, including a linear trend with multiplicative seasonals version that underlies the Holt-Winters forecasting method. Conditionally heteroscedastic models may be developed in a similar manner. Finally we note that smoothing and decomposition, two crucial practical issues, may be performed within the SSOE framework.
Keywords: ARIMA; Dynamic Linear Models; Equivalence; Exponential Smoothing; Forecasting; GARCH; Holt's Method; Holt-Winters Method; Kalman Filter; Prediction Intervals. (search for similar items in EconPapers)
JEL-codes: C22 C51 C53 (search for similar items in EconPapers)
Pages: 33 pages
Date: 2005-04
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2005/wp7-05.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2005-7
Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics
Access Statistics for this paper
More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().