Incorporating a Tracking Signal into State Space Models for Exponential Smoothing
Ralph D. Snyder () and
Anne B. Koehler
No 16/06, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics
Abstract:
It is a common practice to complement a forecasting method such as simple exponential smoothing with a monitoring scheme to detect those situations where forecasts have failed to adapt to structural change. It will be suggested in this paper that the equations for simple exponential smoothing can be augmented by a common monitoring statistic to provide a method that automatically adapts to structural change without human intervention. It is shown that the resulting equations conform to those of damped trend corrected exponential smoothing. In a similar manner, exponential smoothing with drift, when augmented by the same monitoring statistic, produces equations that split the trend into long term and short term components.
Keywords: Forecasting; exponential smoothing; tracking signals. (search for similar items in EconPapers)
JEL-codes: C32 (search for similar items in EconPapers)
Pages: 11 pages
Date: 2006-08
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2006/wp16-06.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2006-16
Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics
Access Statistics for this paper
More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().