EconPapers    
Economics at your fingertips  
 

Non-linear exponential smoothing and positive data

Muhammad Akram (), Rob Hyndman and John Ord

No 14/07, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics

Abstract: We consider the properties of nonlinear exponential smoothing state space models under various assumptions about the innovations, or error, process. Our interest is restricted to those models that are used to describe non-negative observations, because many series of practical interest are so constrained. We first demonstrate that when the innovations process is assumed to be Gaussian, the resulting prediction distribution may have an infinite variance beyond a certain forecasting horizon. Further, such processes may converge almost surely to zero; an examination of purely multiplicative models reveals the circumstances under which this condition arises. We then explore effects of using an (invalid) Gaussian distribution to describe the innovations process when the underlying distribution is lognormal. Our results suggest that this approximation causes no serious problems for parameter estimation or for forecasting one or two steps ahead. However, for longer-term forecasts the true prediction intervals become increasingly skewed, whereas those based on the Gaussian approximation may have a progressively larger negative component. In addition, the Gaussian approximation is clearly inappropriate for simulation purposes. The performance of the Gaussian approximation is compared with those of two lognormal models for short-term forecasting using data on the weekly sales of over three hundred items of costume jewelry.

Keywords: Forecasting; time series; exponential smoothing; positive-valued processes; seasonality; state space models. (search for similar items in EconPapers)
JEL-codes: C22 C51 C53 (search for similar items in EconPapers)
Pages: 25 pages
Date: 2007-11
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2007/wp14-07.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2007-14

Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics

Access Statistics for this paper

More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().

 
Page updated 2025-03-30
Handle: RePEc:msh:ebswps:2007-14