Vector Autoregresive Moving Average Identification for Macroeconomic Modeling: Algorithms and Theory
Donald Poskitt
No 12/09, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics
Abstract:
This paper develops a new methodology for identifying the structure of VARMA time series models. The analysis proceeds by examining the echelon canonical form and presents a fully automatic data driven approach to model specification using a new technique to determine the Kronecker invariants. A novel feature of the inferential procedures developed here is that they work in terms of a canonical scalar ARMAX representation in which the exogenous regressors are given by predetermined contemporaneous and lagged values of other variables in the VARMA system. This feature facilitates the construction of algorithms which, from the perspective of macroeconomic modeling, are efficacious in that they do not use AR approximations at any stage. Algorithms that are applicable to both asymptotically stationary and unit-root, partially nonstationary (cointegrated) time series models are presented. A sequence of lemmas and theorems show that the algorithms are based on calculations that yield strongly consistent estimates.
Keywords: Keywords: Algorithms; asymptotically stationary and cointegrated time series; echelon (search for similar items in EconPapers)
JEL-codes: C32 C52 C63 C87 (search for similar items in EconPapers)
Pages: 41 pages
Date: 2009-11-12
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2009/wp12-09.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2009-12
Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics
Access Statistics for this paper
More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().