EconPapers    
Economics at your fingertips  
 

Automatic forecasting with a modified exponential smoothing state space framework

Alysha M De Livera ()

No 10/10, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics

Abstract: A new automatic forecasting procedure is proposed based on a recent exponential smoothing framework which incorporates a Box-Cox transformation and ARMA residual corrections. The procedure is complete with well-defined methods for initialization, estimation, likelihood evaluation, and analytical derivation of point and interval predictions under a Gaussian error assumption. The algorithm is examined extensively by applying it to single seasonal and non-seasonal time series from the M and the M3 competitions, and is shown to provide competitive out-of-sample forecast accuracy compared to the best methods in these competitions and to the traditional exponential smoothing framework. The proposed algorithm can be used as an alternative to existing automatic forecasting procedures in modeling single seasonal and non-seasonal time series. In addition, it provides the new option of automatic modeling of multiple seasonal time series which cannot be handled using any of the existing automatic forecasting procedures. The proposed automatic procedure is further illustrated by applying it to two multiple seasonal time series involving call center data and electricity demand data.

Keywords: Exponential smoothing; state space models; automatic forecasting; Box-Cox transformation; residual adjustment; multiple seasonality; time series (search for similar items in EconPapers)
JEL-codes: C22 C53 (search for similar items in EconPapers)
Pages: 29 pages
Date: 2010-04-28
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-for and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2010/wp10-10.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2010-10

Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics

Access Statistics for this paper

More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().

 
Page updated 2025-03-19
Handle: RePEc:msh:ebswps:2010-10