Functional Coefficient Nonstationary Regression with Non- and Semi-Parametric Cointegration
Jiti Gao and
Peter Phillips
No 16/13, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics
Abstract:
This paper studies a general class of nonlinear varying coefficient time series models with possible nonstationarity in both the regressors and the varying coefficient components. The model accommodates a cointegrating structure and allows for endo-geneity with contemporaneous correlation among the regressors, the varying coefficient drivers, and the residuals. This framework allows for a mixture of stationary and non-stationary data and is well suited to a variety of models that are commonly used in applied econometric work. Nonparametric and semiparametric estimation methods are proposed to estimate the varying coefficient functions. The analytical findings reveal some important differences, including convergence rates, that can arise in the conduct of semiparametric regression with nonstationary data. The results include some new asymptotic theory for nonlinear functionals of nonstationary and stationary time series that are of wider interest and applicability and subsume much earlier research on such systems. The finite sample properties of the proposed econometric methods are analyzed in simulations. An empirical illustration examines nonlinear dependencies in aggregate consumption function behavior in the US over the period 1960 - 2009.
Keywords: fractional Aggregate consumption; Asymptotic theory; cointegration; density; local time; nonlinear functional; nonparametric estimation; semiparametric; time series; varying coefficient model. (search for similar items in EconPapers)
Date: 2013
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.monash.edu/__data/assets/pdf_file/0007/925369/wp16-13.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2013-16
Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics
Access Statistics for this paper
More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().