EconPapers    
Economics at your fingertips  
 

Gaussian kernel GARCH models

Xibin Zhang () and Maxwell King

No 19/13, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics

Abstract: This paper aims to investigate a Bayesian sampling approach to parameter estimation in the GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the standard deviation. This study is motivated by the lack of robustness in GARCH models with a parametric assumption for the error density when used for error-density based inference such as value-at-risk (VaR) estimation. A contribution of the paper is to construct the likelihood and posterior of the model and bandwidth parameters under the kernel-form error density, and to derive the one-step-ahead posterior predictive density of asset returns. We also investigate the use and benefit of localized bandwidths in the kernel-form error density. A Monte Carlo simulation study reveals that the robustness of the kernel-form error density compensates for the loss of accuracy when using this density. Applying this GARCH model to daily return series of 42 assets in stock, commodity and currency markets, we find that this GARCH model is favored against the GARCH model with a skewed Student t error density for all stock indices, two out of 11 currencies and nearly half of the commodities. This provides an empirical justification for the value of the proposed GARCH model.

Keywords: Bayes factors; Gaussian kernel error density; localized bandwidths; Markov chain Monte Carlo; value-at-risk (search for similar items in EconPapers)
Date: 2013
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://business.monash.edu/econometrics-and-busine ... ions/ebs/wp19-13.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2013-19

Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics

Access Statistics for this paper

More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().

 
Page updated 2025-03-19
Handle: RePEc:msh:ebswps:2013-19