Spiked Eigenvalues of High-Dimensional Separable Sample Covariance Matrices
Bo Zhang,
Jiti Gao,
Guangming Pan () and
Yanrong Yang ()
No 31/19, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics
Abstract:
This paper establishes asymptotic properties for spiked empirical eigenvalues of sample covariance matrices for high-dimensional data with both cross-sectional dependence and a dependent sample structure. A new finding from the established theoretical results is that spiked empirical eigenvalues will reflect the dependent sample structure instead of the cross-sectional structure under some scenarios, which indicates that principal component analysis (PCA) may provide inaccurate inference for cross-sectional structures. An illustrated example is provided to show that some commonly used statistics based on spiked empirical eigenvalues misestimate the true number of common factors. As an application of high-dimensional time series, we propose a test statistic to distinguish the unit root from the factor structure and demonstrate its effective finite sample performance on simulated data. Our results are then applied to analyze OECD healthcare expenditure data and U.S. mortality data, both of which possess cross-sectional dependence as well as non-stationary temporal dependence. It is worth mentioning that we contribute to statistical justification for the benchmark paper by Lee and Carter [25] in mortality forecasting.
Keywords: factor model; high-dimensional data; principal component analysis; spiked empirical eigenvalue. (search for similar items in EconPapers)
JEL-codes: C21 C32 C55 (search for similar items in EconPapers)
Pages: 40
Date: 2019
New Economics Papers: this item is included in nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.monash.edu/business/ebs/research/publications/ebs/wp31-2019.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2019-31
Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics
Access Statistics for this paper
More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().