EconPapers    
Economics at your fingertips  
 

Approximating Bayes in the 21st Century

Gael Martin (), David Frazier () and Christian Robert ()

No 24/21, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics

Abstract: The 21st century has seen an enormous growth in the development and use of approximate Bayesian methods. Such methods produce computational solutions to certain `intractable' statistical problems that challenge exact methods like Markov chain Monte Carlo: for instance, models with unavailable likelihoods, high-dimensional models, and models featuring large data sets. These approximate methods are the subject of this review. The aim is to help new researchers in particular -- and more generally those interested in adopting a Bayesian approach to empirical work -- distinguish between different approximate techniques; understand the sense in which they are approximate; appreciate when and why particular methods are useful; and see the ways in which they can can be combined.

Keywords: Approximate Bayesian inference; intractable Bayesian problems; approximate Bayesian computation; Bayesian synthetic likelihood; variational Bayes; integrated nested Laplace approximation (search for similar items in EconPapers)
Pages: 38
Date: 2021
New Economics Papers: this item is included in nep-cmp, nep-cwa, nep-ecm, nep-ets and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.monash.edu/business/ebs/research/publications/ebs/wp24-2021.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2021-24

Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics

Access Statistics for this paper

More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().

 
Page updated 2025-03-30
Handle: RePEc:msh:ebswps:2021-24