EconPapers    
Economics at your fingertips  
 

Predicting European cities’ climate mitigation performance using machine learning

Angel Hsu (), Xuewei Wang, Jonas Tan, Wayne Toh and Nihit Goyal
Additional contact information
Angel Hsu: University of North Carolina at Chapel Hill
Xuewei Wang: University of North Carolina at Chapel Hill
Jonas Tan: Yale-NUS College
Wayne Toh: Yale-NUS College
Nihit Goyal: Delft University of Technology

Nature Communications, 2022, vol. 13, issue 1, 1-13

Abstract: Abstract Although cities have risen to prominence as climate actors, emissions’ data scarcity has been the primary challenge to evaluating their performance. Here we develop a scalable, replicable machine learning approach for evaluating the mitigation performance for nearly all local administrative areas in Europe from 2001-2018. By combining publicly available, spatially explicit environmental and socio-economic data with self-reported emissions data from European cities, we predict annual carbon dioxide emissions to explore trends in city-scale mitigation performance. We find that European cities participating in transnational climate initiatives have likely decreased emissions since 2001, with slightly more than half likely to have achieved their 2020 emissions reduction target. Cities who report emissions data are more likely to have achieved greater reductions than those who fail to report any data. Despite its limitations, our model provides a replicable, scalable starting point for understanding city-level climate emissions mitigation performance.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-35108-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35108-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-35108-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35108-5