CircRREB1 mediates lipid metabolism related senescent phenotypes in chondrocytes through FASN post-translational modifications
Zhe Gong,
Jinjin Zhu,
Junxin Chen,
Fan Feng,
Haitao Zhang,
Zheyuan Zhang,
Chenxin Song,
Kaiyu Liang,
Shuhui Yang,
Shunwu Fan (),
Xiangqian Fang () and
Shuying Shen ()
Additional contact information
Zhe Gong: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Jinjin Zhu: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Junxin Chen: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Fan Feng: Obstetrics and Gynecology Hospital
Haitao Zhang: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Zheyuan Zhang: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Chenxin Song: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Kaiyu Liang: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Shuhui Yang: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Shunwu Fan: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Xiangqian Fang: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Shuying Shen: Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University
Nature Communications, 2023, vol. 14, issue 1, 1-22
Abstract:
Abstract Osteoarthritis is a prevalent age-related disease characterized by dysregulation of extracellular matrix metabolism, lipid metabolism, and upregulation of senescence-associated secretory phenotypes. Herein, we clarify that CircRREB1 is highly expressed in secondary generation chondrocytes and its deficiency can alleviate FASN related senescent phenotypes and osteoarthritis progression. CircRREB1 impedes proteasome-mediated degradation of FASN by inhibiting acetylation-mediated ubiquitination. Meanwhile, CircRREB1 induces RanBP2-mediated SUMOylation of FASN and enhances its protein stability. CircRREB1-FASN axis inhibits FGF18 and FGFR3 mediated PI3K-AKT signal transduction, then increased p21 expression. Intra-articular injection of adenovirus–CircRreb1 reverses the protective effects in CircRreb1 deficiency mice. Further therapeutic interventions could have beneficial effects in identifying CircRREB1 as a potential prognostic and therapeutic target for age-related OA.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-40975-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40975-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-40975-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().