Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning
Xiaoyun Yuan,
Yong Wang,
Zhihao Xu,
Tiankuang Zhou and
Lu Fang ()
Additional contact information
Xiaoyun Yuan: Tsinghua University
Yong Wang: Tsinghua University
Zhihao Xu: Tsinghua University
Tiankuang Zhou: Tsinghua University
Lu Fang: Tsinghua University
Nature Communications, 2023, vol. 14, issue 1, 1-10
Abstract:
Abstract Optoelectronic neural networks (ONN) are a promising avenue in AI computing due to their potential for parallelization, power efficiency, and speed. Diffractive neural networks, which process information by propagating encoded light through trained optical elements, have garnered interest. However, training large-scale diffractive networks faces challenges due to the computational and memory costs of optical diffraction modeling. Here, we present DANTE, a dual-neuron optical-artificial learning architecture. Optical neurons model the optical diffraction, while artificial neurons approximate the intensive optical-diffraction computations with lightweight functions. DANTE also improves convergence by employing iterative global artificial-learning steps and local optical-learning steps. In simulation experiments, DANTE successfully trains large-scale ONNs with 150 million neurons on ImageNet, previously unattainable, and accelerates training speeds significantly on the CIFAR-10 benchmark compared to single-neuron learning. In physical experiments, we develop a two-layer ONN system based on DANTE, which can effectively extract features to improve the classification of natural images.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-42984-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42984-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-42984-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().