General-purpose programmable photonic processor for advanced radiofrequency applications
Daniel Pérez-López (),
Ana Gutierrez,
David Sánchez,
Aitor López-Hernández,
Mikel Gutierrez,
Erica Sánchez-Gomáriz,
Juan Fernández,
Alejandro Cruz,
Alberto Quirós,
Zhenyun Xie,
Jesús Benitez,
Nandor Bekesi,
Alejandro Santomé,
Diego Pérez-Galacho,
Prometheus DasMahapatra,
Andrés Macho and
José Capmany ()
Additional contact information
Daniel Pérez-López: Universitat Politècnica de València
Ana Gutierrez: Universitat Politècnica de València
David Sánchez: iPronics, Programmable Photonics
Aitor López-Hernández: Universitat Politècnica de València
Mikel Gutierrez: iPronics, Programmable Photonics
Erica Sánchez-Gomáriz: Universitat Politècnica de València
Juan Fernández: iPronics, Programmable Photonics
Alejandro Cruz: iPronics, Programmable Photonics
Alberto Quirós: iPronics, Programmable Photonics
Zhenyun Xie: iPronics, Programmable Photonics
Jesús Benitez: iPronics, Programmable Photonics
Nandor Bekesi: iPronics, Programmable Photonics
Alejandro Santomé: iPronics, Programmable Photonics
Diego Pérez-Galacho: Universitat Politècnica de València
Prometheus DasMahapatra: Universitat Politècnica de València
Andrés Macho: Universitat Politècnica de València
José Capmany: Universitat Politècnica de València
Nature Communications, 2024, vol. 15, issue 1, 1-11
Abstract:
Abstract A general-purpose photonic processor can be built integrating a silicon photonic programmable core in a technology stack comprising an electronic monitoring and controlling layer and a software layer for resource control and programming. This processor can leverage the unique properties of photonics in terms of ultra-high bandwidth, high-speed operation, and low power consumption while operating in a complementary and synergistic way with electronic processors. These features are key in applications such as next-generation 5/6 G wireless systems where reconfigurable filtering, frequency conversion, arbitrary waveform generation, and beamforming are currently provided by microwave photonic subsystems that cannot be scaled down. Here we report the first general-purpose programmable processor with the remarkable capability to implement all the required basic functionalities of a microwave photonic system by suitable programming of its resources. The processor is fabricated in silicon photonics and incorporates the full photonic/electronic and software stack.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-45888-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45888-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-45888-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().