EconPapers    
Economics at your fingertips  
 

VO2 memristor-based frequency converter with in-situ synthesize and mix for wireless internet-of-things

Chang Liu, Pek Jun Tiw, Teng Zhang, Yanghao Wang, Lei Cai, Rui Yuan, Zelun Pan, Wenshuo Yue, Yaoyu Tao () and Yuchao Yang ()
Additional contact information
Chang Liu: Peking University
Pek Jun Tiw: Peking University
Teng Zhang: Peking University
Yanghao Wang: Peking University
Lei Cai: Peking University
Rui Yuan: Peking University
Zelun Pan: Peking University
Wenshuo Yue: Peking University
Yaoyu Tao: Peking University
Yuchao Yang: Peking University

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract Wireless internet-of-things (WIoT) with data acquisition sensors are evolving rapidly and the demand for transmission efficiency is growing rapidly. Frequency converter that synthesizes signals at different frequencies and mixes them with sensor datastreams is a key component for efficient wireless transmission. However, existing frequency converters employ separate synthesize and mix circuits with complex digital and analog circuits using complementary metal-oxide semiconductor (CMOS) devices, naturally incurring excessive latency and energy consumption. Here we report a highly uniform and calibratable VO2 memristor oscillator, based on which we build memristor-based frequency converter using 8 $$\times$$ × 8 VO2 array that can realize in-situ frequency synthesize and mix with help of compact periphery circuits. We investigate the self-oscillation based on negative differential resistance of VO2 memristors and the programmability with different driving currents and calibration resistances, demonstrating capabilities of such frequency converter for in-situ frequency synthesize and mix for 2 ~ 8 channels with frequencies up to 48 kHz for low frequency transmission link. When transmitting classical sensor data (acoustic, vision and spatial) in an end-to-end WIoT experimental setup, our VO2-based memristive frequency converter presents up to 1.45× ~ 1.94× power enhancement with only 0.02 ~ 0.21 dB performance degradations compared with conventional CMOS-based frequency converter. This work highlights the potential in solving frequency converter’s speed and energy efficiency problems in WIoT using high crystalline quality epitaxially grown VO2 and calibratable VO2-based oscillator array, revealing a promising direction for next-generation WIoT system design.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45923-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45923-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45923-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45923-7