EconPapers    
Economics at your fingertips  
 

Disentangling the multiorbital contributions of excitons by photoemission exciton tomography

Wiebke Bennecke, Andreas Windischbacher, David Schmitt, Jan Philipp Bange, Ralf Hemm, Christian S. Kern, Gabriele D’Avino, Xavier Blase, Daniel Steil, Sabine Steil, Martin Aeschlimann, Benjamin Stadtmüller, Marcel Reutzel, Peter Puschnig, G. S. Matthijs Jansen () and Stefan Mathias ()
Additional contact information
Wiebke Bennecke: Georg-August-Universität Göttingen
Andreas Windischbacher: University of Graz, NAWI Graz
David Schmitt: Georg-August-Universität Göttingen
Jan Philipp Bange: Georg-August-Universität Göttingen
Ralf Hemm: University of Kaiserslautern-Landau
Christian S. Kern: University of Graz, NAWI Graz
Gabriele D’Avino: Univ. Grenoble Alpes, CNRS, Inst NEEL
Xavier Blase: Univ. Grenoble Alpes, CNRS, Inst NEEL
Daniel Steil: Georg-August-Universität Göttingen
Sabine Steil: Georg-August-Universität Göttingen
Martin Aeschlimann: University of Kaiserslautern-Landau
Benjamin Stadtmüller: University of Kaiserslautern-Landau
Marcel Reutzel: Georg-August-Universität Göttingen
Peter Puschnig: University of Graz, NAWI Graz
G. S. Matthijs Jansen: Georg-August-Universität Göttingen
Stefan Mathias: Georg-August-Universität Göttingen

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible. Here, we show how time-resolved photoemission momentum microscopy can be used to gain access to the entangled wavefunction and to unravel the exciton’s multiorbital electron and hole contributions. For the prototypical organic semiconductor buckminsterfullerene (C60), we exemplify the capabilities of exciton tomography and achieve unprecedented access to key properties of the entangled exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45973-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45973-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45973-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45973-x