EconPapers    
Economics at your fingertips  
 

Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes

Oleksii M. Volkov (), Oleksandr V. Pylypovskyi (), Fabrizio Porrati (), Florian Kronast, Jose A. Fernandez-Roldan, Attila Kákay, Alexander Kuprava, Sven Barth, Filipp N. Rybakov, Olle Eriksson, Sebastian Lamb-Camarena, Pavlo Makushko, Mohamad-Assaad Mawass, Shahrukh Shakeel, Oleksandr V. Dobrovolskiy, Michael Huth and Denys Makarov ()
Additional contact information
Oleksii M. Volkov: Institute of Ion Beam Physics and Materials Research
Oleksandr V. Pylypovskyi: Institute of Ion Beam Physics and Materials Research
Fabrizio Porrati: Johann Wolfgang Goethe-Universität Frankfurt am Main
Florian Kronast: Helmholtz-Zentrum Berlin für Materialien und Energie
Jose A. Fernandez-Roldan: Institute of Ion Beam Physics and Materials Research
Attila Kákay: Institute of Ion Beam Physics and Materials Research
Alexander Kuprava: Johann Wolfgang Goethe-Universität Frankfurt am Main
Sven Barth: Johann Wolfgang Goethe-Universität Frankfurt am Main
Filipp N. Rybakov: Uppsala University
Olle Eriksson: Uppsala University
Sebastian Lamb-Camarena: Superconductivity and Spintronics Laboratory
Pavlo Makushko: Institute of Ion Beam Physics and Materials Research
Mohamad-Assaad Mawass: Helmholtz-Zentrum Berlin für Materialien und Energie
Shahrukh Shakeel: Institute of Ion Beam Physics and Materials Research
Oleksandr V. Dobrovolskiy: Superconductivity and Spintronics Laboratory
Michael Huth: Johann Wolfgang Goethe-Universität Frankfurt am Main
Denys Makarov: Institute of Ion Beam Physics and Materials Research

Nature Communications, 2024, vol. 15, issue 1, 1-13

Abstract: Abstract Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-46403-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46403-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-46403-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46403-8