Fine-tuning the pore environment of ultramicroporous three-dimensional covalent organic frameworks for efficient one-step ethylene purification
Yang Xie,
Wenjing Wang,
Zeyue Zhang,
Jian Li,
Bo Gui,
Junliang Sun (),
Daqiang Yuan () and
Cheng Wang ()
Additional contact information
Yang Xie: Wuhan University
Wenjing Wang: Chinese Academy of Sciences
Zeyue Zhang: Peking University
Jian Li: Peking University
Bo Gui: Wuhan University
Junliang Sun: Peking University
Daqiang Yuan: Chinese Academy of Sciences
Cheng Wang: Wuhan University
Nature Communications, 2024, vol. 15, issue 1, 1-7
Abstract:
Abstract The construction of functional three-dimensional covalent organic frameworks (3D COFs) for gas separation, specifically for the efficient removal of ethane (C2H6) from ethylene (C2H4), is significant but challenging due to their similar physicochemical properties. In this study, we demonstrate fine-tuning the pore environment of ultramicroporous 3D COFs to achieve efficient one-step C2H4 purification. By choosing our previously reported 3D-TPB-COF-H as a reference material, we rationally design and synthesize an isostructural 3D COF (3D-TPP-COF) containing pyridine units. Impressively, compared with 3D-TPB-COF-H, 3D-TPP-COF exhibits both high C2H6 adsorption capacity (110.4 cm3 g−1 at 293 K and 1 bar) and good C2H6/C2H4 selectivity (1.8), due to the formation of additional C-H···N interactions between pyridine groups and C2H6. To our knowledge, this performance surpasses all other reported COFs and is even comparable to some benchmark porous materials. In addition, dynamic breakthrough experiments reveal that 3D-TPP-COF can be used as a robust absorbent to produce high-purity C2H4 directly from a C2H6/C2H4 mixture. This study provides important guidance for the rational design of 3D COFs for efficient gas separation.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-47377-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47377-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-47377-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().