EconPapers    
Economics at your fingertips  
 

Enhancing photocatalytic H2O2 production with Au co-catalysts through electronic structure modification

Xidong Zhang, Duoduo Gao, Bicheng Zhu, Bei Cheng, Jiaguo Yu and Huogen Yu ()
Additional contact information
Xidong Zhang: China University of Geosciences
Duoduo Gao: Wuhan University of Technology
Bicheng Zhu: China University of Geosciences
Bei Cheng: Wuhan University of Technology
Jiaguo Yu: China University of Geosciences
Huogen Yu: China University of Geosciences

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract Gold-based co-catalysts are a promising class of materials with potential applications in photocatalytic H2O2 production. However, current approaches with Au co-catalysts show limited H2O2 production due to intrinsically weak O2 adsorption at the Au site. We report an approach to strengthen O2 adsorption at Au sites, and to improve H2O2 production, through the formation of electron-deficient Auδ+ sites by modifying the electronic structure. In this case, we report the synthesis of TiO2/MoSx-Au, following selective deposition of Au onto a MoSx surface which is then further anchored onto TiO2. We further show that the catalyst achieves a significantly increased H2O2 production rate of 30.44 mmol g−1 h−1 in O2-saturated solution containing ethanol. Density functional theory calculations and X-ray photoelectron spectroscopy analysis reveal that the MoSx mediator induces the formation of electron-deficient Auδ+ sites thereby decreasing the antibonding-orbital occupancy of Au-Oads and subsequently enhancing O2 adsorption. This strategy may be useful for rationally designing the electronic structure of catalyst surfaces to facilitate artificial photosynthesis.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-47624-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47624-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-47624-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47624-7