In situ captured antibacterial action of membrane-incising peptide lamellae
Kamal el Battioui,
Sohini Chakraborty,
András Wacha,
Dániel Molnár,
Mayra Quemé-Peña,
Imola Cs. Szigyártó,
Csenge Lilla Szabó,
Andrea Bodor,
Kata Horváti,
Gergő Gyulai,
Szilvia Bősze,
Judith Mihály,
Bálint Jezsó,
Loránd Románszki,
Judit Tóth,
Zoltán Varga,
István Mándity,
Tünde Juhász and
Tamás Beke-Somfai ()
Additional contact information
Kamal el Battioui: HUN-REN Research Centre for Natural Sciences
Sohini Chakraborty: HUN-REN Research Centre for Natural Sciences
András Wacha: HUN-REN Research Centre for Natural Sciences
Dániel Molnár: HUN-REN Research Centre for Natural Sciences
Mayra Quemé-Peña: HUN-REN Research Centre for Natural Sciences
Imola Cs. Szigyártó: HUN-REN Research Centre for Natural Sciences
Csenge Lilla Szabó: Eötvös Loránd University
Andrea Bodor: Analytical and BioNMR Laboratory
Kata Horváti: Research Centre for Natural Sciences
Gergő Gyulai: Research Centre for Natural Sciences
Szilvia Bősze: Eötvös Loránd University
Judith Mihály: HUN-REN Research Centre for Natural Sciences
Bálint Jezsó: HUN-REN Research Centre for Natural Sciences
Loránd Románszki: HUN-REN Research Centre for Natural Sciences
Judit Tóth: HUN-REN Research Centre for Natural Sciences
Zoltán Varga: HUN-REN Research Centre for Natural Sciences
István Mándity: HUN-REN Research Centre for Natural Sciences
Tünde Juhász: HUN-REN Research Centre for Natural Sciences
Tamás Beke-Somfai: HUN-REN Research Centre for Natural Sciences
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral β3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-47708-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47708-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-47708-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().