EconPapers    
Economics at your fingertips  
 

Automatic detection of methane emissions in multispectral satellite imagery using a vision transformer

Bertrand Rouet-Leduc () and Claudia Hulbert
Additional contact information
Bertrand Rouet-Leduc: Disaster Prevention Research Institute
Claudia Hulbert: Geolabe

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract Curbing methane emissions is among the most effective actions that can be taken to slow down global warming. However, monitoring emissions remains challenging, as detection methods have a limited quantification completeness due to trade-offs that have to be made between coverage, resolution, and detection accuracy. Here we show that deep learning can overcome the trade-off in terms of spectral resolution that comes with multi-spectral satellite data, resulting in a methane detection tool with global coverage and high temporal and spatial resolution. We compare our detections with airborne methane measurement campaigns, which suggests that our method can detect methane point sources in Sentinel-2 data down to plumes of 0.01 km2, corresponding to 200 to 300 kg CH4 h−1 sources. Our model shows an order of magnitude improvement over the state-of-the-art, providing a significant step towards the automated, high resolution detection of methane emissions at a global scale, every few days.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-47754-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47754-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-47754-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47754-y