EconPapers    
Economics at your fingertips  
 

Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces

Hikari Manako, Shoya Ohsumi, Yoshiki J. Sato (), R. Okazaki and D. Aoki
Additional contact information
Hikari Manako: Tokyo University of Science
Shoya Ohsumi: Tokyo University of Science
Yoshiki J. Sato: Tokyo University of Science
R. Okazaki: Tokyo University of Science
D. Aoki: Tohoku University

Nature Communications, 2024, vol. 15, issue 1, 1-8

Abstract: Abstract Transverse thermoelectric effect, the conversion of longitudinal heat current into transverse electric current, or vice versa, offers a promising energy harvesting technology. Materials with axis-dependent conduction polarity, known as p × n-type conductors or goniopolar materials, are potential candidate, because the non-zero transverse elements of thermopower tensor appear under rotational operation, though the availability is highly limited. Here, we report that a ternary metal LaPt2B with unique crystal structure exhibits axis-dependent thermopower polarity, which is driven by mixed-dimensional Fermi surfaces consisting of quasi-one-dimensional hole sheet with out-of-plane velocity and quasi-two-dimensional electron sheets with in-plane velocity. The ideal mixed-dimensional conductor LaPt2B exhibits an extremely large transverse Peltier conductivity up to ∣αyx∣ = 130 A K−1 m−1, and its transverse thermoelectric performance surpasses those of topological magnets utilizing the anomalous Nernst effect. These results thus manifest the mixed-dimensionality as a key property for efficient transverse thermoelectric conversion.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-48217-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48217-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-48217-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48217-0