EconPapers    
Economics at your fingertips  
 

Disentangling genetic effects on transcriptional and post-transcriptional gene regulation through integrating exon and intron expression QTLs

Anneke Brümmer () and Sven Bergmann ()
Additional contact information
Anneke Brümmer: University of Lausanne
Sven Bergmann: University of Lausanne

Nature Communications, 2024, vol. 15, issue 1, 1-13

Abstract: Abstract Expression quantitative trait loci (eQTL) studies typically consider exon expression of genes and discard intronic RNA sequencing reads despite their information on RNA metabolism. Here, we quantify genetic effects on exon and intron levels of genes and their ratio in lymphoblastoid cell lines, revealing thousands of cis-QTLs of each type. While genetic effects are often shared between cis-QTL types, 7814 (47%) are not detected as top cis-QTLs at exon levels. We show that exon levels preferentially capture genetic effects on transcriptional regulation, while exon-intron-ratios better detect those on co- and post-transcriptional processes. Considering all cis-QTL types substantially increases (by 71%) the number of colocalizing variants identified by genome-wide association studies (GWAS). It further allows dissecting the potential gene regulatory processes underlying GWAS associations, suggesting comparable contributions by transcriptional (50%) and co- and post-transcriptional regulation (46%) to complex traits. Overall, integrating intronic RNA sequencing reads in eQTL studies expands our understanding of genetic effects on gene regulatory processes.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-48244-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48244-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-48244-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48244-x