EconPapers    
Economics at your fingertips  
 

Free-standing ultrathin silicon wafers and solar cells through edges reinforcement

Taojian Wu, Zhaolang Liu, Hao Lin (), Pingqi Gao () and Wenzhong Shen ()
Additional contact information
Taojian Wu: Shanghai Jiao Tong University
Zhaolang Liu: Shenzhen Campus of Sun Yat-sen University
Hao Lin: Shenzhen Campus of Sun Yat-sen University
Pingqi Gao: Shenzhen Campus of Sun Yat-sen University
Wenzhong Shen: Shanghai Jiao Tong University

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract Crystalline silicon solar cells with regular rigidity characteristics dominate the photovoltaic market, while lightweight and flexible thin crystalline silicon solar cells with significant market potential have not yet been widely developed. This is mainly caused by the brittleness of silicon wafers and the lack of a solution that can well address the high breakage rate during thin solar cells fabrication. Here, we present a thin silicon with reinforced ring (TSRR) structure, which is successfully used to prepare free-standing 4.7-μm 4-inch silicon wafers. Experiments and simulations of mechanical properties for both TSRR and conventional thin silicon structures confirm the supporting role of reinforced ring, which can share stress throughout the solar cell preparation and thus suppressing breakage rate. Furthermore, with the help of TSRR structure, an efficiency of 20.33% (certified 20.05%) is achieved on 28-μm silicon solar cell with a breakage rate of ~0%. Combining the simulations of optoelectrical properties for TSRR solar cell, the results indicate high efficiency can be realized by TSRR structure with a suitable width of the ring. Finally, we prepare 50 ~ 60-μm textured 182 × 182 mm2 TSRR wafers and perform key manufacturing processes, confirming the industrial compatibility of the TSRR method.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-48290-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48290-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-48290-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48290-5