EconPapers    
Economics at your fingertips  
 

Designing highly efficient interlocking interactions in anisotropic active particles

Solenn Riedel, Ludwig A. Hoffmann, Luca Giomi and Daniela J. Kraft ()
Additional contact information
Solenn Riedel: Leiden University
Ludwig A. Hoffmann: Leiden University
Luca Giomi: Leiden University
Daniela J. Kraft: Leiden University

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract Cluster formation of microscopic swimmers is key to the formation of biofilms and colonies, efficient motion and nutrient uptake, but, in the absence of other interactions, requires high swimmer concentrations to occur. Here we experimentally and numerically show that cluster formation can be dramatically enhanced by an anisotropic swimmer shape. We analyze a class of model microswimmers with a shape that can be continuously tuned from spherical to bent and straight rods. In all cases, clustering can be described by Michaelis-Menten kinetics governed by a single scaling parameter that depends on particle density and shape only. We rationalize these shape-dependent dynamics from the interplay between interlocking probability and cluster stability. The bent rod shape promotes assembly in an interlocking fashion even at vanishingly low particle densities and we identify the most efficient shape to be a semicircle. Our work provides key insights into how shape can be used to rationally design out-of-equilibrium self-organization, key to creating active functional materials and processes that require two-component assembly with high fidelity.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-49955-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49955-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-49955-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49955-x