EconPapers    
Economics at your fingertips  
 

Tailoring superstructure units for improved oxygen redox activity in Li-rich layered oxide battery’s positive electrodes

Hao Liu, Weibo Hua (), Sylvia Kunz, Matteo Bianchini, Hang Li, Jiali Peng, Jing Lin, Oleksandr Dolotko, Thomas Bergfeldt, Kai Wang, Christian Kübel, Peter Nagel, Stefan Schuppler, Michael Merz, Bixian Ying, Karin Kleiner, Stefan Mangold, Deniz Wong, Volodymyr Baran, Michael Knapp, Helmut Ehrenberg and Sylvio Indris ()
Additional contact information
Hao Liu: Hermann-von-Helmholtz-Platz 1
Weibo Hua: Hermann-von-Helmholtz-Platz 1
Sylvia Kunz: Universitätsstraße 30
Matteo Bianchini: Universitätsstraße 30
Hang Li: Hermann-von-Helmholtz-Platz 1
Jiali Peng: Hermann-von-Helmholtz-Platz 1
Jing Lin: Hermann-von-Helmholtz-Platz 1
Oleksandr Dolotko: Hermann-von-Helmholtz-Platz 1
Thomas Bergfeldt: Hermann-von-Helmholtz-Platz 1
Kai Wang: Hermann-von-Helmholtz-Platz 1
Christian Kübel: Hermann-von-Helmholtz-Platz 1
Peter Nagel: Kaiserstraße 12
Stefan Schuppler: Kaiserstraße 12
Michael Merz: Kaiserstraße 12
Bixian Ying: University of Münster (WWU)
Karin Kleiner: University of Münster (WWU)
Stefan Mangold: Hermann-von-Helmholtz-Platz 1
Deniz Wong: Albert-Einstein-Strasse 15
Volodymyr Baran: Notkestrasse 85
Michael Knapp: Hermann-von-Helmholtz-Platz 1
Helmut Ehrenberg: Hermann-von-Helmholtz-Platz 1
Sylvio Indris: Hermann-von-Helmholtz-Platz 1

Nature Communications, 2024, vol. 15, issue 1, 1-14

Abstract: Abstract The high-voltage oxygen redox activity of Li-rich layered oxides enables additional capacity beyond conventional transition metal (TM) redox contributions and drives the development of positive electrode active materials in secondary Li-based batteries. However, Li-rich layered oxides often face voltage decay during battery operation. In particular, although Li-rich positive electrode active materials with a high nickel content demonstrate improved voltage stability, they suffer from poor discharge capacity. Here, via physicochemical and electrochemical measurements, we investigate the correlation between oxygen redox activity and superstructure units in Li-rich layered oxides, specifically the fractions of LiMn6 and Ni4+-stabilized LiNiMn5 within the TM layer. We prove that an excess of LiNiMn5 hinders the extraction/insertion of lithium ions during Li metal coin cell charging/discharging, resulting in incomplete oxygen redox activity at a cell potential of about 3.3 V. We also demonstrate that lithium content adjustment could be a beneficial approach to tailor the superstructure units. Indeed, we report an improved oxygen redox reversibility for an optimized Li-rich layered oxide with fewer LiNiMn5 units.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54312-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54312-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54312-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54312-z