EconPapers    
Economics at your fingertips  
 

Mechanical shutdown of battery separators: Silicon anode failure

Ji-Young Seo, Suhwan Kim, Jung-Hui Kim, Yong-Hyeok Lee, Jin-Young Shin, Somi Jeong, Dong-Wook Sung, Yong Min Lee () and Sang-Young Lee ()
Additional contact information
Ji-Young Seo: Yonsei University
Suhwan Kim: Daegu Gyeongbuk Institute of Science and Technology
Jung-Hui Kim: Yonsei University
Yong-Hyeok Lee: LG Energy Solution
Jin-Young Shin: LG Energy Solution
Somi Jeong: LG Energy Solution
Dong-Wook Sung: LG Energy Solution
Yong Min Lee: Yonsei University
Sang-Young Lee: Yonsei University

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract The pulverization of silicon (Si) anode materials is recognized as a major cause of their poor cycling performance, yet a mechanistic understanding of this degradation from a full cell perspective remains elusive. Here, we identify an overlooked contributor to Si anode failure: mechanical shutdown of separators. Through mechano-structural characterization of Si full cells, combined with digital-twin simulation, we demonstrate that the volume expansion of Si exerts localized compressive stress on commercial polyethylene separators, leading to pore collapse. This structural disruption impairs ion transport across the separator, exacerbating redox nonuniformity and Si pulverization. Compression simulation reveals that a Young’s modulus greater than 1 GPa is required for separators to withstand the volume expansion of Si. To fulfill this requirement, we design a high modulus separator, enabling a high-areal-capacity pouch-type Si full cell to retain 88% capacity after 400 cycles at a fast charge rate of 4.5 mA cm−2.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54313-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54313-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54313-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54313-y